Modulation of Na+/alanine cotransport in liver sinusoidal membrane vesicles by internal divalent cations.

نویسندگان

  • T W Simmons
  • R H Moseley
  • J L Boyer
  • N Ballatori
چکیده

Rat liver basolateral plasma membrane (blLPM) vesicles resuspended in 5 mM Mg2(+)-, Ca2(+)-, Mn2(+)- or Co2(+)-containing media exhibited a markedly lower rate of Na(+)-stimulated L-alanine transport. Divalent cation inhibition of L-alanine uptake was dose dependent, and was observed only when the vesicles were pre-loaded with the divalent cations. The presence or absence of the metal ions in the extravesicular incubation media had no effect on L-alanine transport. Conversely, pretreatment of the vesicles with 0.2 mM of either EGTA or EDTA resulted in higher initial rates of L-alanine transport. This stimulation was overcome by addition of excess divalent cation to the vesicle suspension solution. Since these blLPM vesicles are primarily oriented right-side-out, the divalent cation inhibition of L-alanine transport appears to be a result of their interaction with cytosolic components of the cell membrane. Total Na+ flux as measured with 22Na+ was not affected by intravesicular 5 mM Mg2+ or Ca2+, indicating that the inhibition was not due to dissipation of the Na+ gradient. These observations suggest that intracellular divalent cations may serve to modulate L-alanine transport across the liver cell plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique mechanism of inhibition of Na+-amino acid cotransport during chronic ileal inflammation.

In the chronically inflamed ileum, unique mechanisms of alteration of transport processes suggest regulation by different immune-inflammatory mediator pathways. We previously demonstrated that Na+-glucose cotransport in the chronically inflamed ileum was inhibited by a decrease in cotransporter number without a change in glucose affinity. The aim of this study was to determine the alterations i...

متن کامل

Ethinylestradiol treatment induces multiple canalicular membrane transport alterations in rat liver.

We investigated the effects of 17 alpha-ethinylestradiol treatment of rats on various transport functions in isolated basolateral and canalicular liver plasma membrane vesicles. Both membrane subfractions were purified to a similar degree from control and cholestatic livers. Although moderate membrane lipid alterations were predominantly observed in basolateral vesicles, no change in basolatera...

متن کامل

Effect of Concentration of Cations on Activated Sludge Properties and Membrane Fouling in Membrane Bioreactors for Wastewater Treatment

This paper presents the results of an investigation on the effects of concentration of cations on activated sludge properties and membrane fouling in submerge membrane bioreactors. The working volume of the experimental setup was two liters. The cellulose acetate membrane was immersed in the bioreactor. The flocculability, settling properties and fouling propensity of activated sludge was measu...

متن کامل

Divalent cation transport by VNUT DIVALENT CATION TRANSPORT BY VESICULAR NUCLEOTIDE TRANSPORTER

The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K. et al., (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11720-11724). Since VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg or Ca, VNUT recognizes free ATP as a trans...

متن کامل

Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells.

Na-nutrient cotransport processes are not only important for the assimilation of essential nutrients but also for the absorption of Na in the mammalian small intestine. The effect of constitutive nitric oxide (cNO) on Na-glucose (SGLT-1) and Na-amino acid cotransport (NAcT) in the mammalian small intestine is unknown. Inhibition of cNO synthase with N(G)-nitro-l-arginine methyl ester (L-NAME) r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1023 3  شماره 

صفحات  -

تاریخ انتشار 1990